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Abstract
We define the totally nonnegative matroid Schubert variety YV of a linear subspace
V ⊂ R

n . We show that YV is a regular CW complex homeomorphic to a closed ball,
with strata indexed by pairs of acyclic flats of the oriented matroid of V . This closely
resembles the regularity theorem for totally nonnegative generalized flag varieties. As
a corollary, we obtain a regular CW structure on the real matroid Schubert variety of
V .

Mathematics Subject Classification Primary 14P25 · Secondary 05B35 · 20G20

1 Introduction

1.1 Matroids

Matroids model the combinatorics of linear subspaces, and have found broad appli-
cation in and out of mathematics [15, 26, 27] since their formulation by Nakasawa
[23] and Whitney [31]. They enjoy a particularly close relationship with algebraic
geometry [3, 19].

In this work, we study the so-called “matroid Schubert varieties”. If V ⊂ K
n is

a linear subspace, then its matroid Schubert variety YV is the Zariski closure of V
in (P1

K
)n , which contains Kn as an open subset. Introduced by [1], matroid Schubert

varieties are central to the proof of the Top Heavy Conjecture for realizable matroids
[14], guide the conjecture’s resolution for allmatroids [8], and are the geometricmodel
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for matroidal Kazhdan-Lusztig theory [11]. Preceding [1], a neighborhood of the most
singular point of a matroid Schubert variety was studied in [24] and [30].

The geometry of YV is controlled by the flats of V ; that is, the sets F ⊂ {1, . . . , n}
such that there is v ∈ V whose zero coordinates are exactly those indexed by F .
The flats of V are an example of a matroid. When K = R, we may consider the
more refined notion of covectors, which record the combinations of signs that the
coordinate functions of Rn can take on V . This data gives an example of an oriented
matroid. Our main theorem says that oriented matroid data controls the geometry of
the totally nonnegative matroid Schubert variety YV := V ∩ R

n≥0
an
, the closure of

V ∩ R
n≥0 in (P1

R
)n with respect to the analytic topology.

1.2 Total positivity

By definition, an invertible real matrix is called totally positive if all the minors are
positive and totally nonnegative if all the minors are nonnegative. These notions were
introduced in the 1930s by Schoenberg [28]. The theory of totally positive realmatrices
was further developed by Whitney and Loewner in the 1950s and found important
applications in many different areas, including, for example, statistics, game theory,
mathematical economics, and stochastic processes.We refer to the book byKarlin [18]
for detailed discussions.

All n×n invertible matrices form the general linear group, which is an example of a
split reductive group. The theory of total positivity for an arbitrary split real reductive
group was developed by Lusztig in his foundational work [20] and has had significant
impacts on many active research directions, including, among others,

• the theory of cluster algebras by Fomin and Zelevinsky [13],
• higher Teichmüller theory by Fock and Goncharov [12],
• the theory of the amplituhedron by Arkani-Hamed and Trnka [5].

It has also been discovered that many spaces with G-action have natural positive
structures. A typical example is the (partial) flag variety P . This has a natural decom-
position into (open) Richardson varieties: P = �αPα . This is a stratification, i.e., the
closure of eachPα (under the Zariski topology) is a disjoint union of other Richardson
varietiesPβ . On the other hand, Lusztig defined the totally nonnegative flagP≥0. This
is a semi-algebraic subvariety of B. We then have the decomposition

P≥0 =
⊔

α

Pα,>0, where P>0 = P≥0 ∩ Pα.

Lusztig refers to the totally nonnegative flag as a “remarkable polyhedral space”. It
has been studied by many leading experts: Bao, Galashin, Karp, Lam, Lusztig, Marsh,
Postnikov, Rietsch,Williams, the first-named author, and others. They have established
many remarkable geometric/topological properties, including the following:

• Connected components: Pα,>0 is a connected component of Pα(R).
• Cell structure: Pα,>0 ∼= R

dimPα

>0 is a semi-algebraic cell.



Total positivity for matroid Schubert varieties Page 3 of 17    83 

• Cellular decomposition: Pα,>0
an

is a disjoint union of other totally positive cells
Pβ,>0.

• Regularity property: Pα,>0
an

is a regular CW complex homeomorphic to a closed
ball.

1.3 Main result

One may expect that matroid Schubert varieties admits a “nice” positive structure,
similar to the flag varieties. This is what we will establish in this paper.

Let E be a finite set. If V ⊂ R
E is a linear subspace, then YV ⊂ (P1

R
)n can

be decomposed as a disjoint union of locally closed “Richardson varieties” Y ◦
FG :=

YV ∩ (0F × R
G\F
	=0 × ∞E\F ), with F ⊂ G ⊂ E running over all flats of V . For any

sets F ⊂ G ⊂ E , we analogously define Y◦
FG := YV ∩ (0F × R

G\F
>0 × ∞E\G), and

let YFG := Y◦
FG

an
. Note that Y∅,E = YV by definition. Call a flat F of V acyclic

if V ∩ (0F × R
E\F
>0 ) is nonempty. The rank of a flat is the codimension in V of the

subspace V ∩ {xi = 0 : i ∈ F}.
Themain result of this paper is that the totally nonnegativematroid Schubert variety

is a “remarkable polyhedral space”. More precisely,

Theorem 1.1 Let V ⊂ R
E , with matroid Schubert variety YV and totally nonnegative

Schubert variety YV .

(i) Y◦
FG is nonempty if and only if F ⊂ G are acyclic flats of V . In this case, Y◦

FG is
a single connected component of Y ◦

FG, and is a semi-algebraic cell isomorphic
to (R>0)

rk(G)−rk(F).
(ii) The closure YFG of a nonempty cell Y◦

FG decomposes as the disjoint union of
cells Y◦

F ′,G ′ with F ⊂ F ′ ⊂ G ′ ⊂ G.
(iii) This decompositionmakesYFG a regularCWcomplex homeomorphic to a closed

ball.

Some comparison is due. Combinatorially,we see a newphenomenon in thematroid
setting. The cells of P≥0 and YV are obtained by intersecting these sets with real
Richardson strata of P and YV , respectively. The poset of boundary strata of P is
thin—that is, every interval of length twohas exactly four elements—andP≥0 contains
exactly one connected component of every stratum. Hence, the poset of cells in the
boundary of P≥0 is also thin, a fact which is helpful for establishing the regularity
property. On the other hand, the poset of boundary strata of YV is not thin. However,
YV fails to meet all strata of YV , and surprisingly, its cell poset is thin. As in the
Lie-theoretic setting, this fact helps us to establish regularity.

Geometrically, the Richardson strata of matroid Schubert varieties are simpler than
those of flag varieties. In the matroid Schubert case, each Richardson stratum is a
hyperplane arrangement complement. Every connected component of a real hyper-
plane arrangement complement is homeomorphic to an open ball. However, a real
open Richardson variety in a flag variety may have connected components with non-
trivial topology (see, e.g. [22]). The relative simplicity of the matroid case’s geometry
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allows us to show that YV is a ball by directly exhibiting it as a cone over a closed ball
in its boundary, bypassing such high-powered tools as the Poincaré conjecture, which
underpins the known proofs of Theorem 1.1’s Lie-theoretic analogues.

Example 1.2 Let V ⊂ R
5 be the linear subspace cut out by

x1 + x2 − x3 = x3 − x4 − x5 = 0.

The poset of flats of V (below left) is not thin, so its interval poset, which indexes
strata of YV , is also not thin. On the other hand, the subposet of acyclic flats (below
right) is thin, so its interval poset, which indexes cells of YV is also thin.

E

123 14 24 15 25 345

1 2 3 4 5

∅

E

14 24 15 25

1 2 4 5

∅

The nonnegative matroid Schubert varietyYV (below) is homeomorphic to a closed
3-ball. Cells of YV are indexed by intervals in the poset of acyclic flats, ordered by
inclusion. Hence, the cells structure ofYV has ten 0-cells and sixteen 1-cells (labelled),
along with eight 2-cells and one 3-cell (unlabelled). One sees immediately that the
closure of any cell is homeomorphic to a closed ball, so the cell structure is regular.
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In the final section of this paper, we use Theorem 1.1 to construct a regular CW
structure on the real matroid Schubert variety YV . Since the poset of cells is determined
by the oriented matroid of V , we obtain:

Theorem 1.3 Let V ⊂ R
E be a linear subspace. The real matroid Schubert variety

YV ⊂ (P1
R
)E is determined up to homeomorphism by the oriented matroid of V .

Another proof of Theorem 1.3 will also appear in forthcoming work of Leo Jiang
and Yu Li [17]. Some of their results and methods are also outlined in Jiang’s FPSAC
abstract [16].

2 Matroids and orientedmatroids

We review aspects of (oriented) matroid theory, comprehensively covered in [32] and
[6], and state the main properties of matroid Schubert varieties.

2.1Wemayomit braceswhenwriting one-element sets, e.g. “{1, 2}∪i”means “{1, 2}∪
{i}” and “{1, 2} × 0” means “{1, 2} × {0}”. If E and K are sets, with E finite, then
K E := ∏

i∈E K . If F ⊂ E , then πF : K E → K F is the projection. Abusing notation,
we will always use the letter πF to denote this projection, regardless of the set K .

If all factors in a product are single-element sets, then we may omit notation for
the product, e.g. “{0} × {1} × {1}” will be written 0{1}1{2,3}, and 0E represents the
origin of RE . Both conventions on singletons will be violated as necessary to avoid
confusion.

Throughout this paper, E will denote a finite set.

In addition to sets, we will need to work with signed sets; that is, elements of
{−, 0,+}E . If X is a signed set, write X−, X0, and X+ for the coordinates of X that
have value−, 0, and+, respectively.We define the negated set−X by (−X)− := X+,
(−X)0 := X0, and (−X)+ := X−. If X and Y are signed sets, then their composition
is given by

(X ◦ Y )i :=
{
Xi , if Xi 	= 0

Yi , otherwise.

Say X is contained in Y , and write X ≤ Y , if X+ ⊂ Y+ and X− ⊂ Y−.
For most terminology on posets, we refer to [29]. The opposite of a poset P is Pop,

the poset on the same underlying set as P , but with order reversed.

2.2 Amatroid on a finite set E is defined by a collection of flats F ⊂ E such that (i)
E is a flat, (ii) the intersection of two flats is a flat, and (iii) if F is a flat and i ∈ E \ F ,
then there is a unique smallest flat containing F ∪ i . The flats of a linear subspace,
defined in Section 1.1, satisfy these properties, giving us a recipe for producing a
matroid from a linear subspace.

When ordered by inclusion, the flats of amatroidM form a graded lattice. The rank
of M , denoted rk(M), is the length of anymaximal chain in this poset. More generally,
the rank of a flat F of M is the length of any maximal chain of flats contained in F ,
and is denoted rk(F). The loops of M are the elements of the minimal flat of M . Call
M loopless if its minimum flat is empty.
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If F ⊂ E is a flat of M , then we can form the restriction M|F and contraction
M/F , matroids on F and E , respectively, with flats

{G ⊂ F : G is a flat of M} and {G ⊃ F : G ⊃ F is a flat of M}.

Remark 2.1 (Matroids and linear algebra) If K is a field and V ⊂ K
E is a linear

subspace, then the flats of V defined in Section 1.1 are the flats of a matroid M . The
rank of M is dim V . Any matroid that arises in this manner is realizable, and V is its
realization.

Let πF : KE → K
F be the coordinate projection. The restriction of M to F is

realized by πF (V ) ⊂ K
F , and the contraction M/F is realized by V ∩ ker(πF ). The

element i ∈ E is a loop of M if and only if πi (V ) = {0}.

LetK be a field and V ⊂ K
E . Recall (from Section 1.1) that thematroid Schubert

variety YV associated to a linear subspace V ⊂ K
E is the Zariski closure of V in

(K ∪ ∞)E = (P1
K
)E . For each pair of flats F ⊂ G of V , let Y ◦

FG := YV ∩ (0F ×
(K	=0)

G\F × ∞E\G), and let YFG be the Zariski closure of Y ◦
FG .

Theorem 2.2 [25, Section 7] LetK be a field. Let V ⊂ K
E be a linear subspace, with

associated matroid M.

(i) The intersection YV ∩ (KF × ∞E\F ) is nonempty if and only if F is a flat, in
which case the intersection is equal to πF (V ) × ∞E\F .

(ii) If F is a flat, then YV ∩ (
(P1

K
)F × ∞E\F) = YπF (V ) × ∞E\F .

(iii) If F is a flat, then YV ∩ (
0F × (P1

K
)E\F) = YV∩ker(πF ).

(iv) YFG is the disjoint union of all Y ◦
F ′G ′ with F ⊂ F ′ ⊂ G ′ ⊂ G.

If L is the set of loops of V ’s matroid, then YV = 0L × YπE\L (V ), so we lose little
by assuming the matroid of V is loopless.

2.3 An oriented matroid M on a finite set E is the data of a collection of covectors
C ⊂ {−, 0,+}E such that

(i) 0E ∈ C,
(ii) C is closed under composition and negation
(iii) If X ,Y ∈ C and X(i) = −Y (i) 	= 0, then there exists Z ∈ C such that Z(i) = 0

and Z( j) = (X ◦ Y ) j = (Y ◦ X) j for all j such that X j = Y j .

The above axioms imply the collection {X0 : X ∈ C} is the flats of a matroid M , the
underlying matroid of M . Flats and loops of an oriented matroid are those of its
underlying matroid.

Ordering {−, 0,+} by 0 < − and 0 < +, we induce a partial order on C. The poset
C ∪ {1̂}, formed by adjoining a maximum to C, is a graded lattice. Maximal covectors
are called topes.

Fix A ⊂ E . By negating in each covector the coordinates indexed by A, we obtain
a new subset C′ ⊂ {−, 0,+}E . In fact, C′ the covectors of an oriented matroid M ′,
called a reorientation of M . Evidently, C and C′ are isomorphic as posets, and the
underlying matroids of M and M ′ are equal.
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Given F ⊂ E a flat of an oriented matroid M on E , the restriction of M to F and
contraction of M by F are the oriented matroids M |F and M/F defined by

C(M |F ) := {πF (X) : X ∈ C(M)} and C(M/F) := {X : X ∈ C(M), F ⊂ X0}.

From this description, one sees that the topes ofM/F are the covectors X with X0 = F .
The underlying matroids of M |F and M/F are M|F and M/F , respectively.

Remark 2.3 (Oriented matroids and linear algebra) The sign map is s : R
E →

{−, 0,+}E defined by

s(v)i =

⎧
⎪⎨

⎪⎩

−, πi (v) < 0,

0, πi (v) = 0,

+, πi (v) > 0.

The sign map explains composition: if v,w ∈ R
E , then s(v) ◦ s(w) = s(v + εw) for

small ε > 0. If V ⊂ R
E is a linear subspace, then {s(v) : v ∈ V } is the covectors of an

oriented matroid. An oriented matroid M that arises in this way is called realizable,
and V its realization. Reorientations of M are obtained by negating some of the
coordinate functions on R

E .
By intersecting the coordinate hyperplanes of RE with V , we obtain a hyper-

plane arrangement in V . The topes of M correspond to the connected components of
the arrangement complement. More generally, each region of the arrangement is the
preimage under s of a covector of M . The poset of the regions’ closures, ordered by
containment, is isomorphic to the poset of covectors of M .

2.4 An acyclic flat1 of an oriented matroid M is a flat F of M such that 0F+E\F is a
covector of M . When ordered by containment, the acyclic flats form a latticeL, called
the Las Vergnas face lattice of M .

Proposition 2.4 Let F be a flat of an oriented matroid M.

(i) Let H be a flat such that H ⊃ F. Then H is an acyclic flat of M/F if and only
if H is an acyclic flat of M.

(ii) If F is an acyclic flat, then G ⊂ F is an acyclic flat of M |F if and only if G is
an acyclic flat of M.

Proof
(i) If H ⊃ F , then 0H+E\H is a covector of M if and only if it is a covector of

M/F .
(ii) Suppose F is an acyclic flat. If G ⊂ F is an acyclic flat of M , then 0G+E\G is

a covector of M , so 0G+F\G is an acyclic flat of M |F .
Conversely, suppose G is an acyclic flat of M |F ; in other words, there is a
covector Y of M such that Y 0 ⊃ G and Y+ ⊃ F \ G. Since F is an acyclic
flat, there is also a covector X of M with X0 = F and X+ = E \ F . Their
composition satisfies (X ◦ Y )0 = F ∩ G = G and

(X ◦ Y )+ = X+ ∪ (Y+ \ X−) ⊃ (E \ F) ∪ ((F \ G) \ ∅) = E \ G,

1 Acyclic flats may be called “positive flats” elsewhere in the literature, e.g. [2, 4].
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so G is an acyclic flat of M . ��
When M is realized by V ⊂ R

E , one can check the acyclicity of a flat F using the
equations of V .

Proposition 2.5 Let M be the oriented matroid of a linear subspace V ⊂ R
E . A flat

F is acyclic if and only if there is no linear function f = ∑
i αi xi that vanishes on V ,

satisfies αi ≥ 0 for all i ∈ E \ F, and has αi > 0 for at least one i ∈ E \ F.

Proof If such an f exists, then V ∩ (0F ×R
E\F
>0 ) = ∅ because f is strictly positive on

0F ×R
E\F
>0 . The converse holds by [6, Proposition 3.4.8(i) & (ii)], applied to M/F . ��

Example 2.6 Proposition 2.4(ii) can fail if F is not an acyclic flat. Let E = {1, 2, 3, 4},
V ⊂ R

E be defined by x1 − x2 − x3 − x4 = 0, and M the associated oriented matroid.
The flats of M are E , and all subsets of E of size ≤ 2. In particular, F = {1, 2} is a
flat of M , but is not an acyclic flat because the system

x1 = x2 = 0

x1 − x2 − x3 − x4 = 0

has no solutions with x3, x4 > 0. For similar reasons, G = {1} is a flat, but not an
acyclic flat of M .

On the other hand, G is an acyclic flat of M |F . This is because the point
(0, 2,−1,−1), for example, is in V , so (0,+,−,−) is a covector of M , so (0,+) is
a covector of M |F .
Remark 2.7 If V ⊂ R

n , then V ∩R
n≥0 is a polyhedral cone. The face lattice of V ∩R

n≥0
is known as the Edmonds-Mandel lattice of M , and the opposite poset is the Las
Vergnas face lattice of M .

A graded poset is thin if all of its length-two intervals have exactly four elements.

Proposition 2.8 The Las Vergnas face lattice is thin.

Proof By [6, Theoerem 4.1.14], the poset of covectors is thin. It suffices to show that
Lop is isomorphic to an interval in the covector poset C. The map ι : Lop → C,
F �→ 0F+E\F is injective and order-preserving. If X and Y are in the image of ι,
then X ,Y ≤ X ◦ Y and X ◦ Y is also in the image of ι. Hence, img(ι) has a unique
maximal element Z . Moreover, if a covector W ∈ C is contained in some element
of img(ι), then W is also in img(ι); therefore, ι is an isomorphism of Lop onto the
interval [0E , Z ] of C. ��

3 Strata ofYV

Let V ⊂ R
E be a linear subspace, with orientedmatroidM . The nonnegativematroid

Schubert variety YV is the analytic closure of V ∩R
E≥0 in (P1

R
)E . For each F ⊂ G ⊂

E , define Y◦
FG := YV ∩ (0F ×R

G\F
>0 × ∞E\G), and YFG := Y◦

FG
an
. In this section,
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we prove Theorems 1.1(i) and (ii), which say that the subsets Y◦
FG indexed by acyclic

flats form a stratification of YV , and that the closure poset is isomorphic to the interval
poset of the Las Vergnas face lattice of the oriented matroid of V .

Some preliminary observations are due. First, if L is the set of loops of M , then
YπE\L (V ) is isomorphic to YV . Second, there is a maximum set of coordinates E ′ ⊂ E

such that V ∩ (RE ′
>0 × 0E\E ′

) is nonempty. This set satisfies V ∩R
E≥0 = V ∩ (RE ′

≥0 ×
0E\E ′

), so YV is isomorphic to YπE ′ (V∩ker(πE\E ′ ) by Theorem 2.2(iii).
Because of these two observations, throughout Sections 3 and Section 4, we may

assume without loss of generality that M is loopless and that V ∩ R
E
>0 is nonempty.

Under these conditions, YV = V ∩ R
E≥0

an = V ∩ R
E
>0

an = Y∅,E (and likewise when
replacing E by any acyclic flat).

Lemma 3.1 If F ⊂ G ⊂ E are flats of M, then

YV ∩ (0F × R
G\F
>0 × ∞E\G) = (

πG(V ) ∩ (0F × R
G\F
>0 )

) × ∞E\G .

In particular, YV ∩ (0F × R
G\F
>0 × ∞E\G) is nonempty if and only if F is an acyclic

flat of M |G.
Proof The equality follows fromTheorem 2.2(ii). For the statement on non-emptiness,
recall (from Section 2.3) that the oriented matroid of πG(V ) is M |G . Non-emptiness
of πG(V ) ∩ (0F × R

G\F
>0 ) is equivalent to 0F × +G\F being a covector of M |G , in

turn equivalent to acyclicity of F in M |G . ��
Lemma 3.2 Let F ⊂ E. If F is not an acyclic flat, then YV ∩ (RF≥0 × ∞E\F ) = ∅.
Proof If F is not a flat, then YV ∩ (RF≥0 ×∞E\F ) = ∅ by Theorem 2.2(i). Otherwise,

suppose F is a flat, but not an acyclic flat and let w ∈ R
F≥0 × ∞E\F . By Proposition

2.5, there is a linear functional f = ∑
i αi xi that vanishes on V and satisfies αi ≥ 0

for all i /∈ F , with at least one such αi nonzero. When N � 0, f does not vanish at
any point of

∏
i∈F (wi − 1

N , wi + 1
N ) × ∏

j∈E\F (N ,∞). Hence, the neighborhood
∏

i∈F (wi − 1
N , wi + 1

N )×∏
j∈E\F (N ,∞] ofw does not intersect V ∩R

E
>0, meaning

that w /∈ YV . ��
Lemma 3.3 If F ⊂ E is an acyclic flat, then

YV ∩ (RF≥0 × ∞E\F ) = YV ∩ (RF≥0 × ∞E\F ).

Proof Let w ∈ YV ∩ (RF≥0 × ∞E\F ). By Theorem 2.2(i), there is w′ ∈ V such that

πF (w′)×∞E\F = w. Since F is acyclic, there is also u ∈ V ∩(0F ×R
E\F
>0 ). For large

t > 0,w′ + tu ∈ V≥0, and limt→∞ w′ + tu = w, sow ∈ V ∩ R
E≥0

an = V ∩ R
E
>0

an =
YV . This shows

YV ∩ (RF≥0 × ∞E\F ) ⊂ YV ∩ (RF≥0 × ∞E\F ),

and the reverse inclusion is obvious, so the two sets are equal. ��
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We are now ready to prove the first part of the main result.

Proof of Theorem 1.1(i) If G is not an acyclic flat, then Y◦
FG is empty by Lemma 3.2.

If G is an acyclic flat, but F is not, then F is not acyclic in M |G by Proposition 2.4
(ii), so Y◦

FG is empty by Lemma 3.1.
Conversely, if both F and G are acyclic flats, then

Y◦
FG = YV ∩ (0F × R

G\F
>0 × ∞E\F ) = (

πG(V ) ∩ (0F × R
G\F
>0 )

) × ∞E\G

by Lemma 3.1 and Lemma 3.3. Consequently,Y◦
FG is the interior of a polyhedral cone

of dimension rk(G) − rk(F). Via the equalities

Y ◦
FG = YV ∩ (0F × R

G\F
	=0 × ∞E\G) = (

πG(V ) ∩ (0F × R
G\F
	=0 )

) × ∞E\G ,

we see Y ◦
FG is the complement of a real hyperplane arrangement in V ∩ {xi = 0 :

i ∈ F}. Since F and G are acyclic, 0F+G\F is a tope of the oriented matroid associ-
ated to this arrangement; the corresponding connected component of the arrangement
complement is Y◦

FG . ��
The following two corollaries of Theorem 1.1(i) provide geometric interpretations

for restriction and contraction at the level of totally nonnegative matroid Schubert
varieties. They closely resemble Theorem 2.2(i) and (iii).

Corollary 3.4 If G ⊂ E is an acyclic flat of M, then

YV ∩ ((P1
R
)G × ∞E\G) = YπG (V ) × ∞E\G .

Proof By Lemma 3.3 and Lemma 3.1, YV ∩ ((P1
R
)G × ∞E\G) contains (πG(V ) ∩

R
G
>0)×∞E\G , the closure of which is YπG (V ) ×∞E\G . This proves the “⊃” contain-

ment. For the reverse: by Theorem 1.1(i) the nonempty strata of YV are of the form
YV ∩ (0F × R

G\F
>0 × ∞E\G), with F ⊂ G acyclic flats of M . By Proposition 2.4(ii),

F and G are also acyclic flats of M |G , the oriented matroid represented by πG(V ).
Hence,

YV ∩ (0F × R
G\F
>0 × ∞E\G) = (

πG(V ) ∩ (0F × R
G\F
>0 )

) × ∞E\G

= (YπG (V ) ∩ (0F × R
G\F
>0 )

) × ∞E\G

by Lemma 3.3 and Lemma 3.1, which completes the proof. ��
A proof along the same lines shows:

Corollary 3.5 If F is an acyclic flat, then YV ∩ (0F × (P1
R
)E\F ) = YV∩ker(πF ).

Together, these corollaries yield a short proof of the main result’s second part.
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Proof of Theorem 1.1(ii) By Corollary 3.4 and Corollary 3.5, YFG is equal to 0F ×
YπG (V∩ker(πF )) × ∞E\G , in turn the closure of 0F × (

πG(V ∩ ker(πF )) ∩ (0F ×
R
G\F
>0 )

) × ∞E\G . The latter set is equal to Y◦
FG . Strata of YπG (V∩ker(πF )) correspond

to pairs F ′ ⊂ G ′ of acyclic flats of (M/F)|G . By Proposition 2.4, such F ′ ⊂ G ′ are
precisely the acyclic flats of M such that [F ′,G ′] ⊂ [F,G], as desired. ��

4 Topology ofYV

In this section, we prove Theorem 1.1(iii), which says thatYV is a regular CWcomplex
homeomorphic to a closed Euclidean ball. For basics on CW complexes, we refer the
reader to [21].

4.1 Shellings and topology

ACWcomplex is regular if the closure of any of its cells is homeomorphic to a closed
Euclidean ball. A d-complex is a finite regular CW complex with all maximal cells
of dimension d. Maximal closed cells of a d-complex � are facets. Following [7] or
[6, Appendix 4.7], a shelling of � is an ordering of its facets (F1, . . . , Fm) such that
the boundary complex of F1 has a shelling, Fj ∩ (∪ j−1

i=1 Fi ) is (d − 1)-complex for

1 < j ≤ m, and the boundary of Fj has a shelling in which the facets of Fj ∩(∪ j−1
i=1 Fi )

come first for 1 < j ≤ m.

Theorem 4.1 [9, Theorem 4.5] The boundary complex of any convex polytope is
shellable.

A shellable complex satisfies the so-called “Property S” of [9]. It is equivalent to
shellability for simplicial complexes.

Proposition 4.2 If (F1, . . . , Fm) is a shelling of a d-complex �, then for all i > j
there exists k < i such that Fi ∩ Fj ⊂ Fk and Fk ∩ Fj has dimension d − 1.

Proof If i > j then each cell of Fi ∩ Fj is contained in a cell G of �, maximal among
those contained in Ci := Fi ∩ (F1 ∪ · · · ∪ Fi−1). Since G cannot be written as a union
of its proper faces, it must be contained in some Fk with k < i . The dimension of G
is d − 1 because Ci is pure of dimension d − 1. ��

The following result is our main topological tool.

Proposition 4.3 [7, Proposition 4.3] A shellable d-complex is homeomorphic to a
closed Euclidean ball if each of its (d − 1)-cells is a face of at most two d-cells, and
some (d − 1)-cell is contained in only one d-cell.

4.2
We prove Theorem 1.1(iii) inductively. Let Y0 be the set of all points in YV with
at least one coordinate zero. The following lemma serves as an induction step of the
proof.
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Lemma 4.4 Write dim V = d + 1. If Theorem 1.1 holds for linear subspaces of
dimension ≤ d, then:

(i) ∂YV := YV \ Y∅,E is a regular CW complex whose cells are the semialgebraic
cells Y◦

FG with (F,G) 	= (∅, E).
(ii) Y0 is a regular CW complex whose cells are the semialgebraic cells Y◦

FG with
F 	= ∅.

(iii) Each (d − 1)-cell of ∂YV is a face of exactly two d-cells of ∂YV .
(iv) There exists a (d − 1)-cell of Y0 that is a face of only one d-cell of Y0.
(v) There is a shelling of ∂YV in which all cells of Y0 come first. In particular, Y0

is shellable.

Proof We first prove (i). By Corollary 3.4 and Corollary 3.5, the closure of a semial-
gebraic cell Y◦

FG ⊂ ∂YV is

YFG = 0F × YπG (V∩ker(πF )) × ∞E\G .

Hence, by our hypothesis that Theorem 1.1(iii) holds for linear spaces of dimension
≤ d, there is a homeomorphismfrom a closed ball toYFG that carries the interior of the
ball onto Y◦

FG and carries the boundary of the ball onto the boundary of YFG , a union
of lower-dimensional cells. Taken together (as F andG vary), these homeomorphisms
constitute a regular CW structure on ∂YV . This proves (i).

Part (ii) follows from (i) because Y0 is the subcomplex of ∂YV comprised of all
cells Y◦

FG with F 	= ∅.
We next prove parts (iii) and (iv). A (d − 1)-dimensional cell of ∂YV is of the form

Y◦
FG , where (rk(F), rk(G)) is one of (0, d − 1), (1, d), or (2, d + 1). In the case

(0, d − 1), Proposition 2.8 implies that there are exactly two acyclic flats of rank d
that contain G. Hence, there are exactly two cells of dimension d of which Y◦

FG is
a face. The case (2, d + 1) follows likewise. In the case (1, d), Y◦

FG is a face of the
two d-cells Y◦

∅G and Y◦
FE . Both of these cells are contained in ∂YV , but only Y◦

FE is
contained Y0. This proves (iii) and (iv).

Finally, we check (v). The Las Vergnas face lattice of M is dual to the face poset of
the polyhedral cone V≥0; therefore,Lop and L are the face posets of convex polytopes
Pop
M and PM with facets in bijection with the rank 1 and corank 1 acyclic flats of M ,

respectively. By Theorem 4.1, let (F1, . . . , Fs) and (G1, . . . ,Gt ) be shellings of P
op
M

and PM , respectively. We will show by induction on d that

([F1, E], . . . , [Fs, E], [∅,G1], . . . , [∅,Gt ])

indexes a shelling of ∂YV .
The statement holds when d = 1; suppose d > 1. The boundary of YF1,E

∼=
YV∩{xi=0:i∈F1} is shellable by the induction hypothesis. For later cells, we break into
two cases. First consider

C j := YFj ,E ∩ (∪i< jYFi ,E ) = ∪i< jYFi∨Fj ,E .
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Since (F1, . . . , Fs) is a shelling of P
op
M , for each i < j , there is k such thatYFi∨Fk ,E ⊃

YFi∨Fk ,E and Fi∨Fk has rank 2 byProposition 4.2. This showsC j is a (d−1)-complex.
Let Pop

M (F) be the face of Pop
M corresponding to an acyclic flat F in Lop. By

hypothesis, Pop
M (Fj ) has a shelling in which the facets Pop

M (Fj ∨ Fi ), i < j and
rk(Fj ∨ Fi ) = 2 come first. The face poset of Pop

M (Fj ) is the same as that of Pop
M/Fj

,
the polytope associated to the oriented matroid of V ∩ {x j = 0}. Hence, by induction
∂YV∩{x j=0} ∼= ∂YFj ,E has a shelling in which the (d − 1)-cells of C j come first.

We now consider

Dj := Y∅,G j ∩ (Y0 ∪ (∪i< jY∅Fi )
) = (∪Fk⊂G jYFk ,G j ) ∪ (∪i< jY∅,Gi∩G j ).

All cells of the form YFk ,G j are dimension d − 1, and ∪i< jY∅,Gi∩G j is a (d − 1)-
complex by Proposition 4.2, as above, so Dj is a (d − 1)-complex. Observing that
Y∅,G j

∼= YπG j (V ), shellability follows as above. ��
Proof of Theorem 1.1(iii) We proceed by induction on dim V = d + 1. When V is
1-dimensional, YV is a line segment with endpoints at 0E and ∞E . The cells are the
two endpoints, plus the interior, so the theorem holds.

Otherwise, suppose dim V > 1. Fix w ∈ Y◦
∅E . Define

μ : (R≥0 ∪ ∞)n → [0, 1], (y1, . . . , yn) �→ 1 − exp(−min
i

{yi/wi })

The valueμ(y) is the largest value of t ∈ [0, 1] such that y−ln(1−t)w has nonnegative
coordinates. The map

ψ : YV → (Y0 × [0, 1])/(Y0 × {1}), y �→ (y + ln(1 − μ(y))w,μ(y))

is a homeomorphism, with inverse

(x, t) �→
{
x − ln(1 − t)w, if t < 1

∞E , if t = 1.

By Proposition 4.3 and Lemma 4.4, Y0 is homeomorphic to a closed ball. Conse-
quently, YV is also homeomorphic to a closed ball.

Any homeomorphism of a closed ball onto YV must take the topological interior
of the ball onto the topological interior of YV , which is Y◦

∅E . Combined with Lemma
4.4(i), this observation implies that YV is a regular CW complex, with cells that
coincide with the semialgebraic cells Y◦

FG of YV . The proof is now complete. ��
Remark 4.5 Our proof relies on the fact that both L and Lop are face lattices of poly-
topes, hence CL-shellable (see [9]). It is known that L is CL-shellable even when M
is not realizable [6, Theorem 4.3.5], but remains open whether Lop is.

Remark 4.6 A slightly different route to Theorem 1.1(iii): the order complex of a
poset is the simplicial complex whose faces are chains in the poset, and a poset is
shellable if its order complex is. By [6, Theorem 4.3.5], Lop is shellable, so L is also
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shellable, so the interval poset of L is shellable by [9, Theorem 8.5]. Every length 2
interval in the interval poset ofL has cardinality 4, so ∂YV is homeomorphic to a sphere
by [10, Propositions 1.1, 1.2] and [21, Theorem III.1.7]. In fact, by [6, Proposition
4.7.26], ∂YV is a PL sphere. The link of a vertex of a PL sphere is also a PL sphere; in
particular, the equator Y� := Y0 \ V≥0 is a PL sphere because it is the link of YE,E .
The star of a point is a cone over its link, so Y0 is a cone over Y�, so Y0 is a closed
ball. The proof may now be completed as above.

5 Topology of YV

Let V ⊂ R
E . In this section, wewill show that YV admits a regular cell decomposition,

and that the inclusion relations of the cells are determined by the oriented matroid of
V . Theorem 1.3 will follow directly.

We first record a consequence of Theorem 1.1. Let M be the oriented matroid of
V , and s : RE → {−, 0,+}E the sign map (see Remark 2.3). Fix a tope T of M . A
flat is relatively acyclic in T if it is the zero set of a covector contained in T . Define

TYV := s−1(T )
an
, the analytic closure of s−1(T ) in (P1

R
)E . For each pair of sets

F ⊂ G ⊂ E , let

TY◦
FG := TYV ∩ (0F × R

(G\F)∩T+
>0 × R

(G\F)∩T−
<0 × ∞E\G).

Finally, set TYV := TY◦
V
an
.

Corollary 5.1 Fix a tope T of the oriented matroid of V ⊂ R
E . Then

(i) TY◦
FG is nonempty if and only if F ⊂ G are acyclic flats in T . In this case, TY◦

FG
is a single connected component of Y ◦

FG, and is a semi-algebraic cell isomorphic
to (R>0)

rk(G)−rk(F).
(ii) The closure TYFG of a nonempty cell TY◦

FG decomposes as the disjoint union
of cells TY◦

F ′,G ′ with F ⊂ F ′ ⊂ G ′ ⊂ G.
(iii) This decomposition makes TYV a shellable regular CW complex homeomorphic

to a closed ball.

Proof For A ⊂ E , let −A : (P1
R
)E → (P1

R
)E be the map that negates the coordi-

nates indexed by E . The result follows from Theorem 1.1 because −T−(s−1(T )) =
−T−(V ) ∩ R

E≥0. ��
Remark 5.2 A tope in the matroid-theoretic setting is akin to a pinning in the Lie-
theoretic setting, as defined in [20]. Indeed, SL(2) has just one negative simple root.
Choosing an isomorphism y : R → U−α up to positive scalars in each factor of
SL(2)n is the same as choosing which side of R ⊂ P

1
R
will be regarded as positive,

hence is the same as choosing a positive side for each hyperplane in V ⊂ R
n obtained

by intersecting V with a coordinate hyperplane of Rn .

The various subsets TYV are not disjoint. The following statement characterizes
their intersections.
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Lemma 5.3 Let M be the oriented matroid of V ⊂ R
E . Define an equivalence

relation on the set of all triples (F,G, T ), with F ⊂ G flats relatively acyclic in
the tope T of M, by (F,G, T ) ∼ (F ′,G ′, T ′) if and only if (F,G) = (F ′,G ′)
and πG\F (T ) = πG\F (T ′). The intersection of TY◦

FG and T ′Y◦
F ′G ′ is empty unless

(F,G, T ) ∼ (F ′,G ′, T ′), in which case TY◦
FG = T ′Y◦

F ′G ′ .

Proof Reorienting, applying Lemma 3.1 and Lemma 3.3, then reverting to the original
orientation, we see

TY◦
FG = (πG(V ) ∩ (0F × R

T+∩(G\F)
>0 × R

T−∩(G\F)
<0 )) × ∞E\G and (∗)

T ′Y◦
F ′G ′ = (πG ′(V ) ∩ (0F

′ × R
T ′+∩(G ′\F ′)
>0 × R

T ′−∩(G ′\F ′)
<0 )) × ∞E\G ′

.

The result follows. ��
For each pair of flats F ⊂ G ⊂ E and tope T of (M/F)|G , let Y ◦

FGT be the
connected component of Y ◦

FG corresponding to the tope T . Explicitly, Y ◦
FGT := YV ∩

(0F × R
T+
>0 × R

T−
<0 × ∞E\G). As usual, let YFGT := Y ◦

FGT
an
.

Lemma 5.4 The equivalence classes of ∼ (defined as in Lemma 5.3) are in bijec-
tion with cells Y ◦

FGT . If [S, I , J ] is the equivalence classes corresponding to Y ◦
FGT ,

then Y ◦
FGT = SY◦

I J . Explicitly, Y
◦
FGT = SY◦

I J if and only if (F,G) = (I , J ) and
πG\F (S) = πG\F (T ).

Proof Given SY◦
I J , take F := I , G := J , and T := πG(X), where X is the unique

covector contained in S with X0 = F . Evidently, YFGT is independent of the repre-
sentative of [S, I , J ].

For the inverse: let F ⊂ G be flats of M and let T be a tope of (M/F)|G . There are
covectors F̃, G̃ of M satisfying F̃0 = F , πG(F̃) = T , and G̃0 = G. The composition
X := G̃ ◦ F̃ then satisfies G̃ ≤ X , X0 = F , and πG(X) = T . Both F and G are
relatively acyclic with respect to any tope S ≥ X of M , so there is an equivalence
class [S, F,G]. This class is independent of S because πG\F (S) = πG\F (T ).

Under the bijection described above, we see that YFGT corresponds to [S, I , J ] if
and only if (F,G) = (I , J ) and πG\F (S) = πG\F (T ). In this case, SY◦

I J = YFGT

by Eq. (∗). ��
Theorem 5.5 Let M be the oriented matroid of V ⊂ R

E .

(i) YFGT contains Y ◦
F ′G ′T ′ if and only if F ⊂ F ′ ⊂ G ′ ⊂ G and there is a tope S of

M satisfying: F,G, F ′,G ′ are all relatively acyclic in S, πG\F (S) = πG\F (T )

and πG ′\F ′(S) = πG ′\F ′(T ′).
(ii) The cells Y ◦

F,G,T , where F ⊂ G run over flats of M and T runs over topes of
(M/F)|G, form a regular CW decomposition of YV .

Proof We prove the second statement first. The set ∪T TYV is closed in (P1
R
)E and

contains V ; therefore, it is equal to YV . Together with Lemma 5.3 and Corollary 5.1,
this implies the collection {SY◦

I J }I ,J ,S is a regular cell decomposition of YV . The cells
in this decomposition are in fact the sets Y ◦

FGT by Lemma 5.4, completing the proof
of Theorem 5.5(ii).
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We now prove the first statement. The closure of any cell is contained in some set
SYV . Hence, the closure of Y ◦

FGT contains Y ◦
F ′G ′T ′ if and only if there is a tope S of

M such that Y ◦
FGT = SY◦

FG , Y
◦
F ′G ′T ′ = SY◦

F ′G ′ , and SYFG ⊃ SY◦
F ′G ′ . By Corollary

5.1 and Lemma 5.4, this is equivalent to the conditions specified by Theorem 5.5(i).
��

Proof of Theorem 1.3 By Theorem 5.5, YV is a regular CW complex, and the inclusion
relations of its cells depend only on the oriented matroid of V . A regular CW complex
is determined up to homeomorphism by its poset of cells (see, e.g. [21, proof of
Theorem 1.7, page 80]), so YV is determined up to homeomorphism by the oriented
matroid of V . ��

Remark 5.6 If V ⊂ R
3 is defined by x1 + x2 − x3 = 0, then YV has nontrivial first

homology. This means YV is not a shellable cell complex, since a shellable d-complex
always has the homotopy type of a wedge of d-spheres [7, Proposition 4.3].
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